Taking a closer look.

BioFach 2018

Pesticides and contaminants in organic products

Dr. Günter Lach, 15. February 2018

Undesirable substances \implies Pesticide Residues or Contaminants?

Surface treatment substances: DPA and OPP

Chlorate / Perchlorate / Anthraquinone

DPA = DIPHENYLAMINE

OPP = 2-(ORTHO)-PHENYLPHENOLE

<u>Multiple use as</u>

- postharvest chemical (fungicide) on citrus
- antioxidant f. ex. in lubricants approved for use in machines with food contact
- antioxidant in rubber and foam materials

Multiple use as

- postharvest chemical (fungicide) on citrus
- preservative in food (E231)
- biocide/disinfectant in households, hospitals, food processing plants etc.
- fungicide in food packaging

Possible sources of Contamination

Brushes like these.... ...or... ... like these?

Possible sources of Contamination

Cross-Contamination at packing stations

(by Janina Wojzich, DFHV 2013)

Cross-Contamination of untreated lemons after transport via rolls, where treated citrus products have been processed in advance. Levels of the surfactant chemicals were above 0,01 mg/kg!

Regulatory situation:

	Conventional food	Organic food
Classification	Pesticide?!	Contaminant?
Legal basis	MRLs acc. to reg. (EC) no. 396/2005	Orientation value BNN: to be applied?
MRL resp. orientation value	DPA: 0,1 mg/kg on apples and pears as <u>temporary MRL</u> , taking into consideration concerns about cross- contamination effects	0,01 mg/kg

> 2008: no re-approval in the EU as a pesticide

> Consequence : MRL acc. to reg. (EC) 396/2005

0,01 mg/kg

Natural sources of Chlorate and Perchlorate:

- Mineral deposits (geological) and therefore in <u>mineral fertilizers</u>, too
- ≻ soil
- > groundwater
- Easy assimilation by plants
- Systemic intake

Enrichment within the growing parts (vegetative)

lach : bruns

Anthropogenic sources of Chlorate

lach bruns

Disinfection activities "Chlorine bleaching", "Hypochlorite"

"EU-Biocide regulation" no. 528/2012 resp. Reg. (EU) no. 2017/1273 Na- / Ca-Hypochlorite listed as biocidal actives to be used in the "food and feed sector" and drinking water (product groups 4 and 5)

"Chemistry" depending on the influence of light, temperature, time :

Hypochlorite → Chlorate Hypochlorite → Perchlorate (Oxidation processes)

Chemical by-products during "alteration": Chlorate / Perchlorate

Using drinking water, which is legally treated with chlorine containing disinfectants

<u>Update</u> of the current regulatory situation (January 2018):

	Chlorate	Perchlorate
Classification	Still as a pesticide	Contaminant
Legal basis	Reg. (EC) No. 396/2005 (Pesticide-MRLs)	Reg. (EC) No. 315/1993 as basis → temporary reference levels
MRL / legal limits / action limits	0,01 mg/kg (Default value) Temporary action limits: <u>still in place</u> vegetables: 0,25 mg/kg carrots: 0,2 mg/kg other food: 0,1 mg/kg	0,02 up to 1,0 mg/kg, depending on the food product

lach bruns

- Chlorate (DG Sanco)
 - actions on <u>pesticide MRLs</u> based on monitoring data and on a working document published in 2015 with draft MRLs for all commodities listed in Annex I of reg. (EC) no. 396/2005
 - actions on <u>baby food</u>: specific regulations planned
 - actions on <u>drinking water</u>: decrease WHO-guideline level of 0,7 mg/l (DG Environment)

Actual planning of regulatory activities

> Perchlorate

New "regulatory levels" based on recent monitoring data are planned (displacing the "intra-union trade levels")

Commodity	Current level (mg/kg)	Draft level (mg/kg)
Fruits and vegetables, except	0,1	0,05
- Curcubitaceae, kale, leafy veg., except	0,2	0,1
- spinach, rucola, beet leaves, herbs (glassh.)	0,5 - 1,0	0,5
Tea (Camellia sinensis), dried	0,75	0,75
Herbal and fruit infusions, dried	0,75	0,75
Foods for infants, young childr. – ready to eat	0,02	0,01
Other food	0,05	0,02

lach bruns

MOAH = mineral oil "aromatic " hydrocarbons

> "<u>PolyA</u>romatic <u>Hydrocarbons</u>"

Possible sources of contamination:

- Packaging (in the meantime less important)
- Environmental contamination (by poisoned air)
- Contamination during processing (drying, roasting)

TEA Contamination during processing (drying, roasting)

Fossil burning and roasting processes bear a high risk related to contamination with Antraquinone.

> Solution:

Lower process temperature and find good balance between food quality and process contaminants:

significant decrease of Anthraquinone, and

significant decrease of Phthalimide

Possible contamination pathways

15.02.2018

OVERALL CONCLUSION

- Increasing processing of food and the
- Increasing impact by a "chemical" world (chemical pesticides, biocides and disinfectants, plasticisers, mineral oil based products and fossil burning, ingredients of agriculture working material)

bear the risk for more and more discussion about the *integrity of organic products*.

Competent analytical laboratories providing reliable analytical data and reasonable interpretations of the findings are an *important prerequisite* to face these challenges.

Taking a closer look.

BioFach 2019

... Pesticides and Contaminants ...

... a never ending story ...